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STABILITY PROBLEM OF SINGULAR STURM-LIOUVILLE EQUATION

E.S. PANAKHOV1,2, A. ERCAN1

Abstract. We consider the stability of the inverse spectral problems associated with the

Sturm-Liouville equation having singularity type l(l+1)

x2 . To obtain stability results, we use

the method which was given firstly by Ryabushko for regular Sturm-Liouville operator. These

results give a bound for the difference between the spectral functions and an estimation for the

norm of the difference between the solutions of associated problems under some conditions.
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1. Introduction

The Sturm-Liouville problem can be completely reconstructed either from its spectral function

or from the scattering data and the reconstruction procedures are quite efficient. In particular,

they allowed us to find necessary and sufficient conditions for spectral functions of the boundary

value problems under consideration. These conditions show that the symmetric boundary value

problem is uniquely reconstructed from its spectral function ρ (µ) given for all µ. It is well known

[12] that the spectrum and the norming constants of the operator L define its spectral function

and vice versa. The problem of obtaining the potential function from the spectral function of

the operator L is solved in the classical study of Gelfand and Levitan [6]. Later, hundreds

of publications have been devoted to this subject [1, 3-5, 8-13, 17-20, 24, 26]. This theory

provides an effective method recovering the potential function q (x) from the spectra (λn)n∈N
and (µn)n∈N.

A principal question about stability is as follows: what information about the function q (x)

or the boundary value problem in general can be obtained, if the spectral function is known only

on a finite interval of values of the spectral parameter? To answer this question, one has to know

to what extend can two boundary value problems differ from each other, if it is known that their

spectral functions differ slightly for λ varying on a finite interval. Local stability of the inverse

spectral problem was studied by the authors [7, 16, 21, 25]. Schrodinger equation is solved by

numerical methods in [22, 23]. The stability of the inverse problems was proved in [14, 15, 21].

Marchenko and Maslov in [14] deal with stability problem for regular Sturm-Liouville equation in

the case of the spectral functions ρj (λ) coincide on given interval. Aktosun [2] consider stability

estimates for potentials in the case of no eigenvalues and when the reflection coefficient is known

in some interval. Ryabushko [21] found a bound for the variation of difference between the

spectral functions and difference between the solutions of two regular Sturm-Liouville problems.

Our approach is much more diffucult than his method in [21], because we applied this method

for the singular Sturm-Liouville problem.
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In this paper, we deal with the stability of inverse problems for singular Sturm-Liouville

operators. We consider two such problems with potentials q1 (x) and q2 (x) and discuss proximity

of their spectral functions and solutions when the first N+1 eigenvalues of two spectral problems

coincide. We give two important theorems about the stability. In the first theorem, we will give

a bound for the variation of the difference between the spectral functions for singular Sturm-

Liouville equations with Dirichlet conditions. In the second theorem, we obtain an estimation

for the norm of the difference between the solutions for the associated problems.

2. Preliminaries

Consider the singular Sturm-Liouville problem

L1y = −y′′ +
(
q1 (x) +

l (l + 1)

x2

)
y = λy, 0 < x < 1 (1)

with conditions

y (0) = 0, y (1) = 0 (2)

where q1 (x) is a real valued function in L2 (0, 1) and l is a nonnegative integer. The operator L1

is self adjoint on L2 (0, 1) and has a discrete spectrum {λ1,n} . The eigenvalues of the problem

(1)-(2) coincide with the solutions of ψ (λ, 1) = 0 and may be given as an increasing sequence

{λ1,n}∞n=1 satisfying

λ1,n =

(
n+

l

2

)2

π2 +

1∫
0

q1 (x) dx− l (l + 1) + a1,n, (3)

where (a1,n)n∈N is l2 sequences (see [9]).

Now, consider the second singular Sturm-Liouville equation corresponding to q ≡ 0

L0y = −y′′ + l (l + 1)

x2
y = λy (4)

with the Dirichlet boundary conditions (2). Denote by {λ0,n} the eigenvalues of the problem

(2), (4) and satisfy

λ0,n =

(
n+

l

2

)2

π2 − l (l + 1) + a0,n, (5)

where (a0,n)n∈N is l2 sequences [20]. To define norming constants, firstly introduce ψ (λ, x) the

solution of the equation (1) satisfying the initial conditions

ψ (λ, 1) = 0 , ψ′ (λ, 1) = 1. (6)

One has that ψ (λ, x) is regular on (0, 1] with ψ (λ, x) = O
(
x−l
)
, as x → 0 unless λ = λn is a

Dirichlet eigenvalue. We denote the norming constants of the problem (1)-(2) by

α1,n =

1∫
0

ψ2 (λn, x) dx.

It’s well known that the representation of the norming constants α1,n by two spectra is given

α1,n =
(nπ)

l
2 (−1)−n+1 jl

(√
λ1,n

)
λ

l
2 (λ0,n − λ1,n)

∏
m̸=n

λ1,m − λ1,n
λ0,m − λ1,n

for every n ∈ N,1 where jl is the usual spherical Bessel functions in [9].
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(In case λn = λ0,k for some k ∈ N, we must replace the fraction
jl(
√

λ1,n)
λ0,k−λn

with the limiting

expression − j′l(
√

λ0,k)
2
√

λ0,k
.)1

Let us introduce different singular Sturm-Liouville equation

L2y = −y′′ +
(
q2 (x) +

l (l + 1)

x2

)
y = λy , 0 < x < 1 (7)

with boundary conditions (2), where q2 (x) is a real valued function and q2 ∈ L2 (0, 1). The

operator L2 is self adjoint on L2 (0, 1) and has a discrete spectrum {λ2,n} which conform to the

classical asymptotics

λ2,n =

(
n+

l

2

)2

π2 +

1∫
0

q2 (x) dx− l (l + 1) + a2,n, (8)

where (a2,n)n∈N is l2 sequences. Let us denote the solution of equation (7) by φ (λ, x) satisfying

the initial conditions (6).

Similarly, denote the norming constants of the problem (2), (7) respect to two spectra for

every n ∈ N, by

α2,n =
(nπ)

l
2 (−1)−n+1 jl

(√
λ2,n

)
λ

l
2 (λ0,n − λ2,n)

∏
m̸=n

λ2,m − λ2,n
λ0,m − λ2,n

.

Set the spectral functions of the problem (1)–(2) and (2), (7) by

ρ1 (λ) =
∑

λ1,n<λ

1

α1,n
,

ρ2 (λ) =
∑

λ2,n<λ

1

α2,n
,

respectively.

3. Main results

In this section, we give main theorems about the stability of the spectral functions and

solutions respect to two spectra. More exactly, we evaluate the variation of the difference

between the spectral functions and obtain an estimation of difference between two solutions of

problems (1)–(2) and (2), (7) when the eigenvalues {λj,m} , (j = 1, 2) of these problems coincide

numbers ofN+1. Before we give main theorems, let give following lemma containing asymptotics

of the solutions.

Lemma 3.1. Let q′ (x) ∈ L1 (0, 1), then the following inequalities hold∣∣∣∣∣
(
ψ (λ, x) +

sin
√
λ (1− x)√
λ

)
ei
√
λ(1−x)

∣∣∣∣∣ ≤ σ (x)∣∣∣√λ∣∣∣ (∣∣∣√λ∣∣∣− σ (x)
) , (9)

∣∣∣∣∣∣
ψ (λ, x) +

sin
√
λ (1− x)√
λ

− cos
√
λ (1− x)

λ

1∫
x

(
q1 (t) +

l (l + 1)

t2

)
dt

 ei
√
λ(1−x)

∣∣∣∣∣∣
<

1

|λ|3/2

1

2
σ−1 (x) +

σ2 (x)

1− σ(x)

|
√
λ|

 (10)
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for
∣∣∣√λ∣∣∣ > σ (x) and Im

√
λ ≥ 0, where

σ (x) =

1∫
x

∣∣∣∣q1 (t) + l (l + 1)

t2

∣∣∣∣ dt, σ−1 (x) =

1∫
x

∣∣∣∣q1 (t) + l (l + 1)

t2

∣∣∣∣′ dt.
Proof. It is easy to verify that the function ψ (λ, x) satisfies the following integral equation:

ψ (λ, x) = −sin
√
λ (1− x)√
λ

+

1∫
x

sin
√
λ (t− x)√
λ

ψ (λ, t)

(
q1 (t) +

l (l + 1)

t2

)
dt.

To show that the inequality (9) holds, consider the function τ (λ, x) defined as follows:

τ (λ, x) =

{
ψ (λ, x) +

sin
√
λ (1− x)√
λ

}
ei

√
λ(1−x) ,

(
Im

√
λ ≥ 0

)
It is obvious that we have

τ (λ, x) =

1∫
x

sin
√
λ (t− x)√
λ

τ (λ, t) ei
√
λ(t−x)

(
q1 (t) +

l (l + 1)

t2

)
dt

− 1

λ

1∫
x

sin
√
λ (t− x) sin

√
λ (1− t) ei

√
λ(t−x)

×ei
√
λ(1−t)

(
q1 (t) +

l (l + 1)

t2

)
dt. (11)

Denote

m (λ, x) = max
0≤x≤t

|τ (λ, t)| .

It is known that [21] we have∣∣∣∣∣sin
√
λ (t− x)√
λ

ei
√
λ(t−x)

∣∣∣∣∣ < 1∣∣∣√λ∣∣∣ ,
(
t > x ≥ 0, Im

√
λ ≥ 0

)
,

∣∣∣cos√λ (1− x) ei
√
λ(1−x)

∣∣∣ < 1,
(
Im

√
λ ≥ 0

)
.

Considering the above inequalities, rewrite equation (11) as

m (λ, x) ≤ m (λ, x)

1∫
x

∣∣∣q1 (t) + l(l+1)
t2

∣∣∣ dt∣∣∣√λ∣∣∣ +

1∫
x

∣∣∣q1 (t) + l(l+1)
t2

∣∣∣ dt
|λ|

.

Hence, for
∣∣∣√λ∣∣∣ > σ (x) the last inequality gives Equation (9). Let us prove Equation (10). If

we consider following integral equation

−
1∫

x

sin
√
λ (t− x)√
λ

sin
√
λ (1− t)√
λ

(
q1 (t) +

l (l + 1)

t2

)
dt,

it is easy to verify that last integral equation is equal to

cos
√
λ(1−x)
2λ

1∫
x

(
q1 (t) +

l(l+1)
t2

)
dt− 1

2λ

1∫
x

cos
√
λ (2t− x− 1)

(
q1 (t) +

l(l+1)
t2

)
dt. (12)
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Here, applying the partial integration method to the second integral equation at the right side

of (12), we obtain

1∫
x

cos
√
λ (2t− x− 1)

(
q1 (t) +

l (l + 1)

t2

)
dt

=

(
q1 (t) +

l (l + 1)

t2

)
sin

√
λ (2t− x− 1)

2
√
λ

∣∣1
x

− 1

2
√
λ

1∫
x

sin
√
λ (2t− x− 1)

(
q1 (t) +

l (l + 1)

t2

)′
dt.

The last equality imply that

−
1∫

x

sin
√
λ (t− x)√
λ

sin
√
λ (1− t)√
λ

(
q1 (t) +

l (l + 1)

t2

)
dt

=
cos

√
λ (1− x)

2λ

1∫
x

(
q1 (t) +

l (l + 1)

t2

)
dt

−sin
√
λ (1− x)

4λ3/2

(
q1 (1) + l (l + 1) + q1 (x) +

l (l + 1)

x2

)

+
1

4λ3/2

1∫
x

sin
√
λ (2t− x− 1)

(
q1 (t) +

l (l + 1)

t2

)′
dt

<
cos

√
λ (1− x)

2λ

1∫
x

(
q1 (t) +

l (l + 1)

t2

)
dt

+
1

4λ3/2

1∫
x

{
sin

√
λ (2t− x− 1) + sin

√
λ (1− x)

}(
q1 (t) +

l (l + 1)

t2

)′
dt.

Now, if we put last inequality in Equation (11) we get

τ (λ, x) <

1∫
x

sin
√
λ (t− x)√
λ

τ (λ, t) ei
√
λ(t−x)

(
q1 (t) +

l (l + 1)

t2

)
dt

+
ei

√
λ(1−x)

4λ3/2

x∫
1

{
sin

√
λ (1− x) + sin

√
λ (2t− x− 1)

}(
q1 (t) +

l (l + 1)

t2

)′
dt

+
cos

√
λ (1− x) ei

√
λ(1−x)

2λ

1∫
x

(
q1 (t) +

l (l + 1)

t2

)
dt.

Finally, using the result of Equation (9) we get desired estimate∣∣∣∣∣∣
ψ (λ, x) +

sin
√
λ (1− x)√
λ

− cos
√
λ (1− x)

2λ

1∫
x

(
q1 (t) +

l (l + 1)

t2

)
dt

 ei
√
λ(1−x)

∣∣∣∣∣∣
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<
m (λ, x)∣∣∣√λ∣∣∣

1∫
x

∣∣∣∣q1 (t) + l (l + 1)

t2

∣∣∣∣ dt+ 1

2 |λ|3/2

1∫
x

∣∣∣∣q1 (t) + l (l + 1)

t2

∣∣∣∣′ dt
<

1

|λ|3/2

 σ2 (x)

1− σ(x)

|
√
λ|

+
1

2
σ−1 (x)

 .

Hence the proof of Lemma 3.1 is completed. �

Now, we give main theorem in this study.

Theorem 3.1. Let the eigenvalues {λj,m} , (j = 1, 2) of problems (1)–(2) and (2), (7) coincide

the numbers of N + 1, that is, λ1,m = λ2,m for m = 1, 2, ..., N + 1 and the eigenvalues {λ0,m}
corresponding to q ≡ 0 of these problems are equal to each other then

V ar
−∞<λ<N

2

{ρ1 (λ)− ρ2 (λ)} <ρ1(N
2 )

8A(1+ l+3
2N )

2

3π2N2 e

3A(1+ l+3
2N )

2

N2π2

for m > N + 1 , n < N
2 and N ≥ 2

√
A where

A =

1∫
0

|q2 (t)− q1 (t)| dt+O

(
1

m2

)
.

Proof. Consider the difference of the spectral functions

ρ1 (λ)− ρ2 (λ) =
∑
λn<λ

1

α1,n

(
1− α1,n

α2,n

)
,

where

1− α1,n

α2,n
= 1−

jl
(√

λ1,n
)
(λ0,n − λ2,n)

jl
(√

λ2,n
)
(λ0,n − λ1,n)

∞∏
m̸=n

(λ1,m − λ1,n) (λ0,m − λ2,n)

(λ2,m − λ2,n) (λ0,m − λ1,n)
.

By definition of the variation, we have for λ0 < λN+2,

V ar
−∞<λ<λ0

{ρ1 (λ)− ρ2 (λ)} ≤ max
λn<λ0

∣∣∣∣1− α1,n

α2,n

∣∣∣∣ ∑
λn<λ0

1

α1,n
= ρ1 (λ0) max

λn<λ0

∣∣∣∣1− α1,n

α2,n

∣∣∣∣ . (13)

Hence, to evaluate the difference of the spectral functions for λ0 < λN+2, let consider the

absolute value at the right side of the Equation (13) as follows:

max
n<N

2

∣∣∣∣1− α1,n

α2,n

∣∣∣∣ = max
n<N

2

∣∣∣∣∣1−
∞∏

m=N+2

(λ1,m − λ1,n) (λ0,m − λ2,n)

(λ2,m − λ2,n) (λ0,m − λ1,n)

∣∣∣∣∣ . (14)

Considering the infinite product

Ψ (λn) =
∞∏

m=N+2

(λ1,m − λ1,n) (λ0,m − λ2,n)

(λ2,m − λ2,n) (λ0,m − λ1,n)
,

it follows that

|lnΨ (λn)| =

∣∣∣∣∣
∞∑

m=N+2

ln

(
λ1,m − λ1,n
λ2,m − λ2,n

)
+

∞∑
m=N+2

ln

(
λ0,m − λ2,n
λ0,m − λ1,n

)∣∣∣∣∣
≤

∞∑
m=N+2

∣∣∣∣ln(1− λ2,m − λ1,m
λ2,m − λ1,n

)∣∣∣∣+ ∞∑
m=N+2

∣∣∣∣ln(1− λ2,n − λ1,n
λ0,m − λ1,n

)∣∣∣∣ . (15)
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It can be easily seen ∣∣∣∣λ2,m − λ1,m
λ2,m − λ1,n

∣∣∣∣ < 1 and

∣∣∣∣ λ2,n − λ1,n
λ0,m − λ1,n

∣∣∣∣ < 1

for m > N + 1 and n < N
2 . It is obvious that the following inequality holds

ln (1− z) <
|z|

1− |z|
for |z| < 1. The last inequality implies that

|lnΨ (λn)| <
∞∑

m=N+2

∣∣∣λ2,m−λ1,m

λ2,m−λ1,n

∣∣∣
1−

∣∣∣λ2,m−λ1,m

λ2,m−λ1,n

∣∣∣ +
∞∑

m=N+2

∣∣∣ λ2,n−λ1,n

λ0,m−λ1,n

∣∣∣
1−

∣∣∣ λ2,n−λ1,n

λ0,m−λ1,n

∣∣∣ . (16)

Here, using the asymptotic formulas of the eigenvalues (3), (5) and (8), we have

∣∣∣∣λ2,m − λ1,m
λ2,m − λ1,n

∣∣∣∣ <

∣∣∣∣ 1∫
0

{q2 (t)− q1 (t)} dt+ a2,m − a1,m

∣∣∣∣∣∣∣λ2,m (1− λ1,n

λ2,m

)∣∣∣
<

∣∣∣∣ 1∫
0

{q2 (t)− q1 (t)} dt+ a2,m − a1,m

∣∣∣∣∣∣∣∣λ2,m(1− λ
1,[[N2 ]]
λ2,N+2

)∣∣∣∣
<

4A
(
1 + l+3

2N

)2
3π2N2

(
1 + 5l+13

3N + (5l+7)(l+3)
3N2

)
<

4A
(
1 + l+3

2N

)2
3π2N2

(17)

and ∣∣∣∣ λ2,n − λ1,n
λ0,m − λ1,n

∣∣∣∣ <
∣∣∣∣∣∣∣∣∣
1∫
0

{q2 (t)− q1 (t)} dt+ a2,n − a1,n

λ0,m

(
1− λ1,n

λ0,m

)
∣∣∣∣∣∣∣∣∣ <

4A
(
1 + l+3

2N

)2
3π2N2

for m > N+1 and n < N
2 . Further, substituting (17) and (18) into (16), we have for N ≥ 2

√
A

|lnΨ (λn)| < 2

4A(1+ l+3
2N )

2

3π2N2

1− 4A(1+ l+3
2N )

2

3π2N2

<

4A(1+ l+3
2N )

2

3π2N2

1− 4A(1+ l+3
2N )

2

3π24A

<
8A
(
1 + l+3

2N

)2
3π2N2

.

By virtue of (14), it follows that

max
n<N

2

∣∣∣∣1− α1,n

α2,n

∣∣∣∣ < e
8A(1+ l+3

2N )
2

3π2N2 − 1.

Thanks to the serial expansion of the exponential function, the last inequality yields

max
n<N

2

∣∣∣∣1− α1,n

α2,n

∣∣∣∣ < 8A
(
1 + l+3

2N

)2
3π2N2

e
3A(1+ l+3

2N )
2

N2π2 . (18)

By considering (13) and (18), we obtain the proof of the Theorem 3.1. �
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Now, we derive convenient representations for the difference of the solutions of problems (1)–

(2) and (2), (7). Let ψ (λ, x) and φ (λ, x) denote the solutions of equations (1) and (7) satisfying

the initial conditions (6), respectively.

Theorem 3.2. The following formula holds

|ψ (λ, x)− φ (λ, x)| 2 <4x

N
exp

{
σ1 (x)− σ1

(
x+

1√
λ

)
+ σ2 (x)− σ2

(
x+

1√
λ

)}
×exp {β1 (x) + β2 (x)}

×ρ1
(
N

2

)
8A
(
1 + l+3

2N

)2
3π2N2

e
3A(1+ l+3

2N )
2

N2π2 (19)

under the conditions of Theorem 3.1 and for 0 ≤ λ ≤ N
2 , where

βi (x) =

x∫
1

∣∣∣∣qi (t) + l (l + 1)

t2

∣∣∣∣ dt+ ∣∣∣Im√
λ
∣∣∣ (1− x) , (i = 1, 2)

σi (x) =

1∫
x

1∫
τ

∣∣∣∣(qi (t) + l (l + 1)

t2

)∣∣∣∣ dtdτ, (i = 1, 2).

Proof. We have the following equality ([14], given 3.21)

[ψ (λ, x)− φ (λ, x)]2 =φ (λ, x)

N
2∫

0

φ (µ, x) dρ1,2 (µ)

x∫
0

ψ (µ, t)ψ (λ, t) dt

−ψ (λ, x)

N
2∫

0

ψ (µ, x) dρ1,2 (µ)

x∫
0

φ (µ, t)φ (λ, t) dt

+

x∫
0

q1,2 (t) dt

×
∞∫

N
2

{ψ (λ, t)φ (λ, t)ψ (µ, x)φ (µ, x)− ψ (λ, x)φ (λ, x)ψ (µ, t)φ (µ, t)}
µ− λ

dρ1,2 (µ) . (20)

Here the interval is taken I =
(
0, N2

)
instead of I = (a, b) .

The solutions ψ (λ, x) and φ (λ, x) can be approximated by the form

ψ (λ, x) =
sin

√
λ (x− 1)√
λ

+

1∫
x

sin
√
λ (t− x)√
λ

ψ (λ, t)

(
q1 (t) +

l (l + 1)

t2

)
dt,

φ (λ, x) =
sin

√
λ (x− 1)√
λ

+

1∫
x

sin
√
λ (t− x)√
λ

φ (λ, t)

(
q2 (t) +

l (l + 1)

t2

)
dt,

respectively, [24]. These solutions satisfy following inequalities

|ψ (λ, x)| ≤ k (λ, x) exp

{
σ1 (x)− σ1

(
x+

1√
λ

)}
, λ > 0 (21)
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|φ (λ, x)| ≤ k (λ, x) exp

{
σ2 (x)− σ2

(
x+

1√
λ

)}
, λ > 0 (22)

where k (λ, x) = min
(
x, 1√

λ

)
.

The inequalities (21) and (22) can be obtained by Picard’s iteration method:

ψ (λ, x) =
∞∑
n=0

ψn (λ, x) ,

where

ψ0 (λ, x) =
sin

√
λ (x− 1)√
λ

and

ψn+1 (λ, x) =

1∫
x

sin
√
λ (t− x)√
λ

ψn (λ, t)

(
q1 (t) +

l (l + 1)

t2

)
dt.

We obtain

|ψ0 (λ, x)| ≤ k (λ, x) ,

|ψn+1 (λ, x)| ≤

x+ 1√
λ∫

x

∣∣∣∣(t− x)ψn (λ, t)

(
q1 (t) +

l (l + 1)

t2

)∣∣∣∣ dt
+

1√
λ

1∫
x+ 1√

λ

∣∣∣∣ψn (λ, t)

(
q1 (t) +

l (l + 1)

t2

)∣∣∣∣ dt.
Let introduce

ϕn (λ, x) =

x+ 1√
λ∫

x

∣∣∣∣(t− x)ψn (λ, t)

(
q1 (t) +

l (l + 1)

t2

)∣∣∣∣ dt
+

1√
λ

1∫
x+ 1√

λ

∣∣∣∣ψn (λ, t)

(
q1 (t) +

l (l + 1)

t2

)∣∣∣∣ dt. (23)

From (23), we get

ϕ′n (λ, x) =

x+ 1√
λ∫

x

∣∣∣∣ψn (λ, t)

(
q1 (t) +

l (l + 1)

t2

)∣∣∣∣ dt.
The comparison of the last two equalities yields

|ψn+1 (λ, x)| ≤ ϕn (λ, x) =

1∫
x

τ+ 1√
λ∫

τ

∣∣∣∣ψn (λ, t)

(
q1 (t) +

l (l + 1)

t2

)∣∣∣∣ dtdτ. (24)

The function ϕn (λ, x) satisfies the initial condition

ϕn (λ, 1) = 0.
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By induction in (24), it is easily seen that

|ψn (λ, x)| ≤ k (λ, x)

{
σ1 (x)− σ1

(
x+ 1√

λ

)}n

n!
.

From the last inequality, we arrive at the formula (21). By similar way, Equation (22) can be

obtained.

Furthermore, if we consider the equations (1) and (7) with initial conditions (6), then the

solutions of these problems satisfy

∣∣∣∣∣ψ (x, λ) +
sin

√
λ (1− x)√
λ

∣∣∣∣∣ ≤
exp

{
x∫
1

(
|q1 (t)|+ |l(l+1)|

t2

)
dt+

∣∣∣Im√
λ
∣∣∣ (1− x)

}
√
λ

, (25)

∣∣∣∣∣φ (x, λ) +
sin

√
λ (1− x)√
λ

∣∣∣∣∣ ≤
exp

{
x∫
1

(
|q2 (t)|+ |l(l+1)|

t2

)
dt+

∣∣∣Im√
λ
∣∣∣ (1− x)

}
√
λ

(26)

for
∣∣∣√λ∣∣∣ ≥ 1, respectively, [5].

Next, using the formula (20) and taking the interval I =
(
0, N2

)
, we obtain

|ψ (λ, x)− φ (λ, x)| 2≤

∣∣∣∣∣∣∣φ (λ, x)

N
2∫

0

φ (µ, x) dρ1,2 (µ)

x∫
0

ψ (µ, t)ψ (λ, t) dt

−ψ (λ, x)

N
2∫

0

ψ (µ, x) dρ1,2 (µ)

x∫
0

φ (µ, t)φ (λ, t) dt

∣∣∣∣∣∣∣ (27)

for 0 ≤ λ ≤ N
2 [21]. If we put (21), (22), (25) and (26) into (27), we get

|ψ (λ, x)− φ (λ, x)| 2 ≤ 2k2 (λ, x)

λ
exp

{
σ1 (x)− σ1

(
x+

1√
λ

)
+ σ2 (x)− σ2

(
x+

1√
λ

)}

× exp {β1 (x) + β2 (x)}

N
2∫

0

dρ1,2 (µ) .

Finally, using the result of Theorem 3.1, we obtain Equation (19).

Therefore the proof is completed. �

4. Conclusions

In conclusion, we have emphasized the importance of a certain stability of the inverse

singular Sturm-Liouville problems. By Ryabushko’s method, we have showed the proximity of

the spectral functions and the solutions of two spectral problems (1), (2) and (2), (7) when their

eigenvalues coincide finitely.
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